
These two data sets are simulated data sets where we 

know the truth.  Both data sets have 215 observations of 

supernovae observations (SNe Ia.). The data has a redshift

(z) value for each supernova and a value for µ (observed 

distance modulus.) The first plot is of z vs µ. 

Because the data sets are simulated we have values for 

Ωm =0.27 and H0 = 72.0.  In data set 1, w(u)=-1 and in 

data set 2, w(u) is a non-linear curve. It is impossible to 

see the difference in w(u) in these plots because it is just 

one parameter of the model.

We will look specifically at two models to fit these data 

sets.  The first will be a parametric model that has been 

studied in depth and the other is a Gaussian Process 

model.  Both of these models will be implemented using 

Bayesian methods and MCMC algorithms.  
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Abstract

The fact that the Universe is expanding has been known since the 1920's.  If the Universe was filled 

with ordinary matter, the expansion should be decelerating.  Beginning in 1998, however, 

observational evidence has been accumulating in favor of an accelerating expansion of the 

Universe.  The unknown driver of the acceleration has been termed dark energy.  The nature of 

dark energy can be investigated by studying its equation of state, that is the relationship of its 

pressure to its density.  The equation of state can be measured via a study of the luminosity 

distance-redshift relation for supernovae.  In this study, we employ supernovae data, including 

measurement errors, to determine whether the equation of state is constant or not.  Our method is 

based on Bayesian analysis of a differential equation and modeling w(z) directly, where w(z) is the 

equation of state parameter.  This work stems from collaboration between UCSC and Los Alamos 

National Laboratory (LANL) in the context of the Institute for Scalable Scientific Data 

Management (ISSDM) project.
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• Use an orthogonal basis of damped Hermite polynomials to approximate w(u)

• Analyze other simulated data sets and real data sets using these methods

• Set up an experimental design to find where more data is need (on the z axis).  In the 

experimental design also test how shrinking uncertainty for µ,       , and H0 would help in  

drawing more conclusive statements about w(z).

• Look into which type of measurement error could be reduced to help make conclusive 

statements about the parameters of interest; especially the standard deviations associated with µ

This non-linear model is advocated by Linder, a cosmologist, as a good alternative to w(u) set 

equal to a constant or just a simple line.  

This leads to a simplified version of our equation, namely we were able to do one of the 

integrations analytically.

To be able to use this likelihood we will need priors: π(a)~U(-20,0), π(b)~U(-20,0), and

π (σ2)~IG(10,9).   We will use this model to compare against our Gaussian Process model.
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Conclusions

• We have shown that a typical parametric model, as well as, a non-parametric Gaussian Process 

model can be fitted to the equation of state. 

• The benefit of using a GP model is that it allows us to fit the equation of state without specifying 

a parametric form, which at this time is unknown.

• The GP produces larger probability bands because it is a more flexible model

• The GP is flexible enough to fit a curve somewhat away from the GP’s mean of -1.

Equations and Parameters of Interest

The main parameter of interest is w(u) there are also two other known parameters:  H0=72.0 and                                             

.  Where the uncertainty shown is one standard deviation.  The main equation of interest 

is a transformation:

To be able to use this equation we will need to specify a form for w(z).  This also leads to a 

likelihood as follows: 

To be able to use this likelihood we will need priors for σ and whatever parameters we used to 

specify w(u).  As a note the τ’s are the standard deviations for µ and part of the data set.
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(0.32,0.43)

(-0.04,0.43)

(-0.88,-0.79)

Data set 2

(0.36,0.50)95% Probability Interval for σ2

(-0.34,0.22)95% Probability interval for b

(-1.06,-0.96)95% Probability interval for a

Data set 1

The red line is the truth; we know it for this case because 

the data sets are simulated..  For the data set 1 (top) we 

have w(u)=-1 and for data set 2 (bottom) w(u) is non-

linear.  The blue line is the mean fit of the MCMC 

simulation and the green lines are the 95% probability 

intervals.  

Overall, model three is able to closely fit the “truth.” We 

are also able to add more unknown parameters to this 

model like H0 and Ωm.  When adding more parameters the 

probability bands get much larger but still include the 

truth.  It should be noted that in the MCMC that the 

parameters are correlated and drawn jointly.  

Table 1 - Posteriors for the Three Parameters

Gaussian Process Model Theory

We will consider a model where w(u) is a Gaussian Process (GP): w(u) ~ GP(-1, κ2 K(u,u’)) where 

K(u,u’)=ρ|u-u’|α.  The correlation function is of great importance in this method because we are 

going to use it to do integration and cannot use a nugget term with our method, this precludes a 

Gaussian or Matern correlation function.  So, we will use α=1.999 as an approximation to a 

Gaussian correlation.  

w(u) is a GP therefore its integral is also a GP:                  .  The integral of a GP can be 

found by integrating the correlation function. 

The mean of y(s) given w(u) can be found through the following relation:

To be able to use this likelihood we will need priors: π(κ2)~ IG(10,9), π(ρ)~U(0,1) and

π (σ2)~IG(10,9).   
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Gaussian Process Model Results

(0.32,0.44)

(0.25,0.50)

(0.656,0.991)

Data set 2

(0.36,0.50)95% Probability Interval for σ2

(0.25,0.50)95% Probability interval for κ2

(0.729,0.997)95% Probability interval for ρ

Data set 1

The red line is the truth; we know it for this case because 

the data sets are simulated..  For the data set 1 (top) we 

have w(u)=-1 and for data set 2 (bottom) w(u) is non-

linear.  The blue line is the mean fit of the MCMC 

simulation and the green lines are the 95% probability 

intervals.  

The GP is capturing the “truth” but it has wider 

probability bands because we do not specify a parametric 

form.   We also were not able to add more unknown 

parameters to this model like H0 and Ωm.  The mixing is 

slow for the GP and it must be run many iterations.  It 

should be noted that in the MCMC that the parameters are 

correlated and drawn jointly.  

Table 1 - Posteriors for the Three Parameters
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